Seed-Based Biclustering of Gene Expression Data
نویسندگان
چکیده
BACKGROUND Accumulated biological research outcomes show that biological functions do not depend on individual genes, but on complex gene networks. Microarray data are widely used to cluster genes according to their expression levels across experimental conditions. However, functionally related genes generally do not show coherent expression across all conditions since any given cellular process is active only under a subset of conditions. Biclustering finds gene clusters that have similar expression levels across a subset of conditions. This paper proposes a seed-based algorithm that identifies coherent genes in an exhaustive, but efficient manner. METHODS In order to find the biclusters in a gene expression dataset, we exhaustively select combinations of genes and conditions as seeds to create candidate bicluster tables. The tables have two columns (a) a gene set, and (b) the conditions on which the gene set have dissimilar expression levels to the seed. First, the genes with less than the maximum number of dissimilar conditions are identified and a table of these genes is created. Second, the rows that have the same dissimilar conditions are grouped together. Third, the table is sorted in ascending order based on the number of dissimilar conditions. Finally, beginning with the first row of the table, a test is run repeatedly to determine whether the cardinality of the gene set in the row is greater than the minimum threshold number of genes in a bicluster. If so, a bicluster is outputted and the corresponding row is removed from the table. Repeating this process, all biclusters in the table are systematically identified until the table becomes empty. CONCLUSIONS This paper presents a novel biclustering algorithm for the identification of additive biclusters. Since it involves exhaustively testing combinations of genes and conditions, the additive biclusters can be found more readily.
منابع مشابه
UniBic: Sequential row-based biclustering algorithm for analysis of gene expression data.
Biclustering algorithms, which aim to provide an effective and efficient way to analyze gene expression data by finding a group of genes with trend-preserving expression patterns under certain conditions, have been widely developed since Morgan et al. pioneered a work about partitioning a data matrix into submatrices with approximately constant values. However, the identification of general tre...
متن کاملبه کارگیری خوشهبندی دوبعدی با روش «زیرماتریسهای با میانگین- درایههای بزرگ» در دادههای بیان ژنی حاصل از ریزآرایههای DNA
Background and Objective: In recent years, DNA microarray technology has become a central tool in genomic research. Using this technology, which made it possible to simultaneously analyze expression levels for thousands of genes under different conditions, massive amounts of information will be obtained. While traditional clustering methods, such as hierarchical and K-means clustering have been...
متن کاملBiFree: An Efficient Biclustering Technique for Gene Expression Data Using Two Layer Free Weighted Bipartite Graph Crossing Minimization
Conventional clustering technique for gene expression data provides a global view of the data. In the biological prospective, a local view is essential for better analysis of gene expression data with simultaneous grouping of genes and conditions. Several biclustering techniques have been proposed in the literature based on different problem formulation. Therefore, it is difficult to compare th...
متن کاملBIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing s...
متن کاملBiclustering on expression data: A review
Biclustering has become a popular technique for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. Most of biclustering approaches use a measure or cost function that determines the quality of biclusters. In such cases, the development of both a suitable heuristics and a good measure for guiding the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012